
Sample ‘Research Highlights’ article for publication
in CACM in LaTeX Format

[Extended Abstract]

Ben Trovato
∗

Institute for Clarity in
Documentation

1932 Wallamaloo Lane
Wallamaloo, New Zealand

trovato@corporation.com

G.K.M. Tobin
†

Institute for Clarity in
Documentation
P.O. Box 1212

Dublin, Ohio 43017-6221
webmaster@marysville-

ohio.com

Lars Thørväld
‡

The Thørväld Group
1 Thørväld Circle

Hekla, Iceland
larst@affiliation.org

Lawrence P. Leipuner
Brookhaven Laboratories
Brookhaven National Lab

P.O. Box 5000
lleipuner@researchlabs.org

Sean Fogarty
NASA Ames Research Center

Moffett Field
California 94035

fogartys@amesres.org

Charles Palmer
Palmer Research Laboratories

8600 Datapoint Drive
San Antonio, Texas 78229

cpalmer@prl.com

ABSTRACT
This paper (and accompanying class file) provide a typical
example of a LATEX document which would be suitable for
publication in the Research Highlights section of CACM.
The style closely mirrors the formatting guidelines for

ACM Proceedings so morphing a Proceedings article into
one suitable for publication in CACM should be minimal.
Just as for Proceedings, it is an alternate style which pro-
duces a tighter-looking paper and was designed in response to
concerns expressed, by authors, over page-budgets. It com-
plements the document Author’s Guide to Preparing CACM
Research Hightlights articles Using LATEX2ε and BibTEX.
This source file has been written with the intention of being
compiled under LATEX2ε and BibTeX.
The developers have tried to include every imaginable sort

of “bells and whistles", such as a subtitle, footnotes on ti-
tle, subtitle and authors, as well as in the text, and every
optional component (e.g. Acknowledgments, Additional Au-
thors, etc.), not to mention examples of equations, theorems,
tables and figures.
To make best use of this sample document, run it through

LATEX and BibTeX, and compare this source code with the
printed output produced by the dvi file. A compiled PDF
version is available on the web page to help you with the

The original version of this paper is entitled “XXX" and
was published in (Title of publication, publication date, pub-
lisher.)
∗A note from Dr. Trovato.
†A note from G. Tobin.
‡A note from Lars.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

‘look and feel’.

1. INTRODUCTION
Articles cited to be published in the Research Highlights

section, of CACM, will provide readers with a collection of
outstanding research articles, selected from the broad spec-
trum of computing-research conferences. Submissions for
this section are first nominated by Editorial Board Members
or Approved Nominating Organizations, and are then sub-
ject to final selection by the Editorial Board. Authors are
then invited to submit their article, after they have rewritten
and expanded the scope of their articles as appropriate for
the broad readership of Communications. It is important
to note that publication in Communications, a computing-
technology and science magazine, does not conflict with
publication in archival journals. Articles in archival journals
are typically expanded versions of conference publications,
while Communications aims at publishing somewhat shorter
and higher-level versions of these articles.
Submissions must address topics of relevance and profes-

sional value to a very broad-based readership. It is best to
remember that most readers are not experts in the author’s
particular discipline, but expect to get a broad perspective
on computing practice and research.
ACM seeks to give its articles a uniform, high-quality ap-

pearance. To do this, ACM has some rigid requirements
for the format of Proceedings, and, thus, since this style is
based on the Proceedings style, CACM Research Highlights
articles will also follow suit. In particular there is a specified
format (balanced double columns), a specified set of fonts
(Arial or Helvetica and Times Roman) in certain specified
sizes (for instance, 9 point for body copy), a specified live
area (18 × 23.5 cm [7" × 9.25"]) centered on the page, spec-
ified size of margins (2.54cm [1"] top and bottom and 1.9cm
[.75"] left and right; specified column width (8.45cm [3.33"])
and gutter size (.083cm [.33"]).

The good news is, with only a handful of manual settings,
the LATEX document class file handles all of this for you.
The remainder of this document is concerned with show-

ing, in the context of an “actual” document, the LATEX com-
mands specifically available for denoting the structure of a
proceedings paper, rather than with giving rigorous descrip-
tions or explanations of such commands.

2. THE BODY OF THE PAPER
Typically, the body of a paper is organized into a hier-

archical structure, with numbered or unnumbered headings
for sections, subsections, sub-subsections, and even smaller
sections. The command \section that precedes this para-
graph is part of such a hierarchy. LATEX handles the num-
bering and placement of these headings for you, when you
use the appropriate heading commands around the titles of
the headings. If you want a sub-subsection or smaller part
to be unnumbered in your output, simply append an aster-
isk to the command name. Examples of both numbered and
unnumbered headings will appear throughout the balance of
this sample document.
We have added additional content to the general body

text, additional content that we have excerpted from various
sources. Much of this is not only ‘words and spaces’ but
complex tables and multi-line display math (see Section 3).
Because the entire article is contained in the document

environment, you can indicate the start of a new paragraph
with a blank line in your input file; that is why this sentence
forms a separate paragraph.

2.1 Type Changes and Special Characters
We have already seen several typeface changes in this sam-

ple. You can indicate italicized words or phrases in your
text with the command \textit; emboldening with the com-
mand \textbf and typewriter-style (for instance, for com-
puter code) with \texttt. But remember, you do not have
to indicate typestyle changes when such changes are part
of the structural elements of your article; for instance, the
heading of this subsection will be in a sans serif typeface,
but that is handled by the document class file. Take care
with the use of the curly braces in typeface changes; they
mark the beginning and end of the text that is to be in the
different typeface.
You can use whatever symbols, accented characters, or

non-English characters you need anywhere in your docu-
ment; you can find a complete list of what is available in the
LATEX User’s Guide[7].

2.2 Math Equations
You may want to display math equations in three distinct

styles: inline, numbered or non-numbered display. Each of
the three are discussed in the next sections.

Two of these, the \numberofauthors and \alignauthor
commands, you have already used; another,
\balancecolumns, will be used in your very last run
of LATEX to ensure balanced column heights on the last
page.
This is the second footnote. It starts a series of three foot-
notes that add nothing informational, but just give an idea
of how footnotes work and look. It is a wordy one, just so
you see how a longish one plays out.
A third footnote, here. Let’s make this a rather short one
to see how it looks.
A fourth, and last, footnote.

2.2.1 Inline (In-text) Equations
A formula that appears in the running text is called an

inline or in-text formula. It is produced by the math en-
vironment, which can be invoked with the usual \begin.
. .\end construction or with the short form $. . .$.
You can use any of the symbols and structures, from α to
ω, available in LATEX[7]; this section will simply show a few
examples of in-text equations in context. Notice how this
equation: limn→∞ x = 0, set here in in-line math style, looks
slightly different when set in display style.

2.2.2 Display Equations
A numbered display equation – one set off by vertical

space from the text and centered horizontally – is produced
by the equation environment. An unnumbered display
equation is produced by the displaymath environment.
Again, in either environment, you can use any of the sym-

bols and structures available in LATEX; this section will just
give a couple of examples of display equations in context.
First, consider the equation, shown as an inline equation
above:

lim
n→∞

x = 0 (1)

Notice how it is formatted somewhat differently in the dis-
playmath environment. Now, we’ll enter an unnumbered
equation:

∞
∑

i=0

x+ 1

and follow it with another numbered equation:
∞
∑

i=0

xi =

∫ π+2

0

f (2)

just to demonstrate LATEX’s able handling of numbering.

2.3 Citations
Citations to articles [3, 5, 4, 6], conference proceedings [5]

or books [10, 7] listed in the Bibliography section of your
article will occur throughout the text of your article. You
should use BibTeX to automatically produce this bibliogra-
phy; you simply need to insert one of several citation com-
mands with a key of the item cited in the proper location in
the .tex file [7]. The key is a short reference you invent to
uniquely identify each work; in this sample document, the
key is the first author’s surname and a word from the title.
This identifying key is included with each item in the .bib
file for your article.
The details of the construction of the .bib file are beyond

the scope of this sample document, but more information
can be found in the Author’s Guide, and exhaustive details
in the LATEX User’s Guide[7].
This article shows only the plainest form of the citation

command, using \cite. This is what is stipulated in the
SIGS style specifications. No other citation format is en-
dorsed or supported.

2.4 Tables
Because tables cannot be split across pages, the best place-

ment for them is typically the top of the page nearest their
initial cite. To ensure this proper “floating” placement of
tables, use the environment table to enclose the table’s con-
tents and the table caption. The contents of the table itself

Table 1: Frequency of Special Characters
Non-English or Math Frequency Comments

Ø 1 in 1,000 For Swedish names
π 1 in 5 Common in math
$ 4 in 5 Used in business
Ψ2
1 1 in 40,000 Unexplained usage

Figure 1: A sample black and white graphic (.eps
format).

must go in the tabular environment, to be aligned properly
in rows and columns, with the desired horizontal and verti-
cal rules. Again, detailed instructions on tabular material
is found in the LATEX User’s Guide.
Immediately following this sentence is the point at which

Table 1 is included in the input file; compare the placement
of the table here with the table in the printed dvi output of
this document.
To set a wider table, which takes up the whole width

of the page’s live area, use the environment table* to en-
close the table’s contents and the table caption. As with
a single-column table, this wide table will “float" to a lo-
cation deemed more desirable. Immediately following this
sentence is the point at which Table 2 is included in the in-
put file; again, it is instructive to compare the placement of
the table here with the table in the printed dvi output of
this document.

2.5 Figures
Like tables, figures cannot be split across pages; the best

placement for them is typically the top or the bottom of
the page nearest their initial cite. To ensure this proper
“floating” placement of figures, use the environment figure
to enclose the figure and its caption.
This sample document contains examples of .eps and .ps

files to be displayable with LATEX. More details on each of
these is found in the Author’s Guide.
As was the case with tables, you may want a figure that

spans two columns. To do this, and still to ensure proper
“floating” placement of tables, use the environment figure*
to enclose the figure and its caption. and don’t forget to end
the environment with figure*, not figure!
Note that, in this example file, .ps or .eps formats are

used; use the \epsfig or \psfig commands as appropriate

Figure 2: A sample black and white graphic (.eps
format) that has been resized with the epsfig com-
mand.

Figure 4: A sample black and white graphic (.ps for-
mat) that has been resized with the psfig command.

for the different file types. We have also found that PDF
files (as ‘includable artwork’) also works well.

2.6 Theorem-like Constructs
Other common constructs that may occur in your article

are the forms for logical constructs like theorems, axioms,
corollaries and proofs. There are two forms, one produced by
the command \newtheorem and the other by the command
\newdef; perhaps the clearest and easiest way to distinguish
them is to compare the two in the output of this sample
document:
This uses the theorem environment, created by the

\newtheorem command:

Theorem 1. Let f be continuous on [a, b]. If G is an
antiderivative for f on [a, b], then

∫ b

a

f(t)dt = G(b)−G(a).

The other uses the definition environment, created by
the \newdef command:

Definition 1. If z is irrational, then by ez we mean the
unique number which has logarithm z:

log ez = z

Two lists of constructs that use one of these forms is given
in the Author’s Guidelines.
There is one other similar construct environment, which

is already set up for you; i.e. you must not use a \newdef
command to create it: the proof environment. Here is a
example of its use:
Proof. Suppose on the contrary there exists a real num-

ber L such that

lim
x→∞

f(x)

g(x)
= L.

Then

l = lim
x→c

f(x) = lim
x→c

[

gx · f(x)
g(x)

]

= lim
x→c

g(x) · lim
x→c

f(x)

g(x)
= 0 · L = 0,

which contradicts our assumption that l 6= 0.

Complete rules about using these environments and using
the two different creation commands are in the Author’s
Guide; please consult it for more detailed instructions. If
you need to use another construct, not listed therein, which
you want to have the same formatting as the Theorem or
the Definition[10] shown above, use the \newtheorem or the
\newdef command, respectively, to create it.

Table 2: Some Typical Commands
Command A Number Comments

\alignauthor 100 Author alignment
\numberofauthors 200 Author enumeration

\table 300 For tables
\table* 400 For wider tables

Figure 3: A sample black and white graphic (.eps format) that needs to span two columns of text.

A Caveat for the TEX Expert
Because you have just been given permission to use the
\newdef command to create a new form, you might think
you can use TEX’s \def to create a new command: Please
refrain from doing this! The research4cacm class file is quite
complex and there is the risk that you may redefine some-
thing. So, please remember, if you choose to use \def, please
be careful as recompilation will be, to say the least, prob-
lematic.

3. MORE TEXT
We also illustrate the effect of Laplacian smoothing on

our medial axis approximation. For Laplacian smoothing
we assume that we know the connectivity ordering of the
sample points along the boundary curve ∂O. Every sample
point has a predecessor and successor in this ordering. In
Laplacian smoothing every sample point is displaced halfway
toward the average of its predecessor and successor. This
process is repeated iteratively.
Typically, the input points sample a curve bounding a

shape. In sample-based geometry processing, properties of
shapes can be discovered by processing this point set, i.e.,
computing the Voronoi diagram, the Delaunay triangula-
tion, or more complicated geometric structures. In Mesecina,
such structures are offered for visualization as layers. Cur-
rently, there are a total of 41 layers available. Layers can be
activated and deactivated, and properties like color, opacity,
point size and line width are easily modifiable through the
user interface.
Unfortunately, the balls in BI are in general highly de-

generate, i.e., many circles bounding such balls can pass
through a single point. This makes the computation of the
restricted power diagram of BI , and thus the computation
of the medial axis prone to numerical errors.
This gives us an alternative, and numerically more stable

way to compute the medial axis of the union of balls in BI
under the condition that the smooth boundary ∂O of O is
sampled sufficiently densely.
The goal is to construct energy-efficient schedules, using

lower processing speeds, while still guaranteeing a deter-
mined service. (2) Sleep states: When a system is idle, it
can be put into a low-power sleep state. One has to find
out when to shut down a system, taking into account that
a transition back to the active mode requires extra energy.
Our contribution: We present the first algorithm-based

study of multi-processor speed scaling where jobs may have
individual release dates and deadlines. Most of our paper
concentrates on the offline scenario. In the first part of the
paper we settle the complexity of the problem with unit size
jobs. We may assume w.l.o.g. that p(i) = 1, for all i. We
prove that if job deadlines are agreeable, an optimal multi-
processor schedule can be computed in polynomial time. In
practice, instances with agreeable deadlines form a natural
input class where, intuitively, jobs arriving at later times
may be finished later. Formally, deadlines are agreeable
if, for any two jobs i and i′, relation r(i) < r(i′) implies
d(i) ≤ d(i′). We then show that if the jobs’ release dates and
deadlines may take arbitrary values, the energy minimiza-
tion problem is NP-hard, even on two processors. For a vari-
able number of processors, energy minimization is strongly
NP-hard. Furthermore, for arbitrary release dates and dead-
lines we develop a polynomial time algorithm that achieves
a constant factor approximation guarantee of αα24α.
Denote the bidding function as b(v). We conjecture that

the bidding function is monotonically increasing (we can ver-
ify that this is true), so that the reverse bidding function
exists and is increasing, denoted as η (b). If one’s rivals bid
according to such a bidding function, we can write out its
probability of winning jth share as

Pj (b) =
(n−1
n−j

)

F (η (b))n−j [1− F (η (b))]j−1

In equilibrium, the winning probability for a bidder with
valuation v is

Pj (v) =
(n−1
n−j

)

F (v)n−j [1− F (v)]j−1

Denote v0 ∈ [v, v̄] as a reserve price (minimal bid) set by
the auctioneer. Clearly, an advertiser with v < v0 will not
bid.

Table 3: Inventory System Information
No of Lines Mean Dev Unit PUT Total Fault Files With Pct With

Rel Files of Code LOC Faults Faults Faults Density Any Faults Any Faults
1 584 145,967 250 768 220 988 6.78 233 39.9
2 567 154,381 272 172 28 200 1.30 88 15.5
3 706 190,596 270 400 85 485 2.56 140 19.8
4 743 203,233 274 292 35 327 1.61 114 15.3
5 804 231,968 289 281 56 337 1.47 131 16.3
6 867 253,870 293 288 51 339 1.34 115 13.3
7 993 291,719 294 170 37 207 0.71 106 10.7
8 1197 338,774 283 375 113 488 1.45 148 12.4
9 1321 377,198 286 346 88 434 1.16 151 11.4
10 1372 396,209 289 202 43 245 0.62 112 8.2
11 1607 426,878 266 174 106 280 0.66 114 7.1
12 1740 476,215 274 192 81 273 0.57 120 6.9
13 1772 460,437 260 88 39 127 0.28 71 4.0
14 1877 482,435 257 164 71 235 0.49 95 5.1
15 1728 479,818 278 251 54 305 0.64 120 6.9
16 1847 510,561 276 181 93 274 0.54 116 6.3
17 1950 538,487 276 188 65 253 0.47 122 6.3

Denote
∫ v

v0

Pj (v)

[

v − 1− F (v)
f(v)

]

f(v)dv ≡ αj

and let αm+1 = 0 for notation convenience. αj can be inter-
preted as the marginal return of jth share. The coefficients
(αj) are generally determined by the distribution function,
the reservation price, and the number of bidders.
From the above Proposition 1, we can see that the ex-

pected profit of the auctioneer is a linear function of share
sizes. Intuitively, one would want to allocate as much re-
source as possible to the share with the highest marginal
return. Thus the optimal share structure is ultimately de-
termined by the rank order of these marginal returns. In
below, we show the conditions under which the marginal re-
turn of the largest share is the highest such that providing
just one grand share is optimal.

4. SOME ADDITIONAL TEXT
Table 3 provides information on the inventory system. We

observed that, after the first release, less than 20% of the
files contained any faults at all, discovered at any stage of
development. Therefore, we reasoned, if we could identify
these files, substantial effort could be saved if testers could
target these files for particular scrutiny.
All three systems used an integrated version control/change

management system that required a modification request or
MR to be written any time a change was to be made to
the system. An MR, which is most commonly written by
a developer or tester, may identify either (1) a problem or
issue found during internal project testing or reported by a
customer or (2) a required or requested change, such as a
system enhancement or maintenance update.
MRs contain a great deal of information, including a writ-

ten description of the reason for the proposed change and a
severity rating of 1 through 4 characterizing the importance
of the proposed change. If the request results in an actual
change, the MR records the file(s) that are changed or added
to the system and the specific lines of code that are added,

deleted, or modified. It also includes such information as
the date of the change and the development stage at which
the change was made.
Most projects begin MR data collection at the time that

the system test phase begins for the first release, and this
was the case for the provisioning system used in our case
studies. The inventory system began data collection far ear-
lier, at the requirements stage, and almost three quarters of
the reported faults were identified during unit testing. Un-
like system testing, which is typically done by professional
testers whose sole job function is to develop and run test
cases once the system has been fully integrated, unit testing
is generally performed by developers while they are creating
individual files. In addition, the system test process tends to
be far more carefully controlled than the unit testing phase.
One of the reasons why the testing process has gained

such a denotative importance is the fact that it consumes
even 50% of the expended effort on software development
[9]. Thus, the software testing activity is a critical element
on the search of quality assurance of a software product,
aiming to make it more reliable.
Learning. Between periods 0 and 1 seller M receives

information form his buyers. We aggregate the information
as follows: Let µi denote the measure of buyers who buy
product i ∈ {l, h} from seller M in period 0. Seller M
receives a random signal yi (xi) ∈ {−1, 0, 1} on the type of
each product i ∈ {l, h} between periods 0 and 1, where

Pr (yi (xi) = 0 | xi) = 1− µi,
Pr (yi (xi) ∈ {−1, 1} | xi) = µi.

We can interpret a signal of 0 as containing no information,
or simply the failure to receive an informative signal. Given
that the seller receives a relevant signal, the probability of
the signal being correct is:

Pr (yi (xi) = xi | yi (xi) ∈ {−1, 1} , xi) =
1

2
+ γ,

where γ ∈
[

0, 12
]

. We can interpret γ as the informativeness
of the signal. The event tree in Figure 2 summarizes the
signal structure where x′i 6= xi.

Given the probabilistic structure, we view this type of
system as a mechanism that computes the posterior beliefs
for each product i based on the signal yi and reports them
only to the buyers who have bought from him in period 0.
The posterior for product i given signal yi will be denoted
by

αi (yi) ≡ Pr (xi = 1 | yi) .
A performance analysis of distributing QoS parameters

over multiple entities able to communicate together has been
performed in this paper. In this study, we compared the
amount of data exchanged in two scenarios differentiated on
the basis of the negotiation approach in use. Our analy-
sis points out that the HD architecture seems to be an al-
ternative operator-centric solution to improve QoS manage-
ment on network side. In fact, data exchanged on network
side in HD architecture scenario is less than in UMTS sce-
nario. However, this solution increases the amount of data
exchanged on end terminal side. This amount can be re-
duced by adopting network assisted or controlled QoS man-
agement approaches. Noticed that this optimization can
also be applied during handover management. We are cur-
rently assessing the performance of our optimization in such
a case.

BTerminalUMTS_R5 = 4 ∗ SQoSd + 184 (3)

BGGSNUMTS_R5 = 12 ∗ SQoSd + 552 (4)

BSGSNUMTS_R5 = 2 ∗ (l + 2) ∗ (SQoSd + 46) (5)

BRNCUMTS_R5 = 2 ∗ SQoSd + 92 (6)

BNetworkUMTS_R5 = (11 + 2 ∗ l) ∗ SQoSd + 874 (7)

BTerminalHD = 3 ∗ SQoSd + l ∗ SRM + (l + 3) ∗ 46
BOMHD = 3 ∗ SQoSd + SOM + 184 (8)

BIPAMHD = 3 ∗ SQoSd + SOM + l ∗ (SRM
+ SIPAM) + (l + 4) ∗ 46 (9)

BRMHD = 4 ∗ SQoSd + 2 ∗ SRM + SIPAM + 276 (10)

BNetworkHD = 8 ∗ SQoSd + SOM + l ∗ SIPAM
+ 2 ∗ SRM + (2 ∗ l + 9) ∗ 46 (11)

We begin by describing the notation used in this paper.
The network is represented as the AS graph G = (V,E),
where each node v ∈ V corresponds to one AS, and each
edge {u, v} ∈ E corresponds to a BGP session between ASes
u and v, meaning that these ASes are physically connected
and share route advertisements. We assume that links be-
tween ASes are reliable FIFO message queues with arbitrary
delays; this accounts for network asynchrony. At most one
link is assumed to exist between ASes, and all the internal
and border routers of an AS are condensed into one node (or
one point of routing-policy control). A path P is a sequence
of nodes v1v2 · · · vk such that {vi, vi+1} ∈ E; we write v ∈ P
if path P traverses node v. Paths can be concatenated with
other nodes or paths; e.g., if P = u · · · v, Q = v · · ·w, and
{w, d} ∈ E, we may write PQd to represent the path start-
ing at node u, following P to node v, then following Q to
node w, and finally traversing the edge (w, d). We assume
that paths are directed from source to destination. BGP, at
a schematic level, computes routes using the following iter-
ative process: (1) Nodes receive route advertisements from
their neighbors, indicating which destinations are reachable

and by what routes; (2) for each destination, a node chooses
the best route from those available, based on local policy;
(3) if the current route to a given destination has changed,
an advertisement is sent to neighboring nodes.
We say the network has converged when each AS v ∈ V is

assigned a path π(v) to the destination, such that the assign-
ment is stable, consistent and safe. By consistent, we mean
that the paths form a forwarding tree to the destination; if
π(v) = vuP , then π(u) = uP . By stable, we mean that
π(v) is the “best” available route for each node v, given the
other nodes’ path assignments, where “best” is determined
by node v’s routing policy; that is, if π(v) = vπ(u), there is
no other node w such that the path vπ(w) is more preferred
at v than π(v).
In this simple example, we note that the router counter

does not get propagated beyond the immediate neighboring
pivot. In the detection phase, node B advertises (BD:1),
which does not need to be readvertised in the next iteration
since B receives (CD:1) thereafter. As the counter is propa-
gated together with route advertisements, this implies that
no further updates to it will take place in the stable phase.
Considering differences and similarities between both of

them, many open questions are discussed about AO testing,
the importance of the development of a testing model for
Aspect–Oriented Programs (AOPs), and also the inclusion
of a potential fault on the model proposed by Alexander [1].
On an algorithmic level there are two mechanisms to save

energy. (1) Speed scaling: Microprocessors currently sold by
chip makers such as AMD and Intel are able to operate at
variable speed. The higher the speed, the higher the power
consumption is. Speed scaling techniques dynamically ad-
just the speed of a processor executing a set of computing
tasks. The goal is to construct energy-efficient schedules,
using lower processing speeds, while still guaranteeing a de-
termined service. (2) Sleep states: When a system is idle,
it can be put into a low-power sleep state. One has to find
out when to shut down a system, taking into account that
a transition back to the active mode requires extra energy.

4.1 A subsection with more text
Some OO software testing facilities regarding procedural

are presented by McGregor [8]: i) methods and classes in-
terfaces are explicitly defined; ii) lesser number of testing
cases to coverage are resultant, due to the reduced number
of parameters; and iii) reuse of testing cases due to the pres-
ence of the inheritance characteristic. Alexander [1] presents
specific issues to testing process over AO paradigm: How to
adequately test aspect-oriented process?
McGregor [8] also points out some disadvantages which

must be considered, like: i) the class correctness evaluation,
complicated by the presence of information encapsulation;
ii) the testing management, obstructed by the multiple en-
try points (methods) in one class; and iii) object iterations,
expanded by polymorphism and dynamic binding.
Zhao [11] proposes a unit testing approach based on data

flow to test AO programs. This approach tests two kinds
of units for AO programs: aspects as modular units that
implement crosscutting concerns, and classes whose behav-
ior could be affected by one or more aspects. To every unit,
three levels of distinct tests are applied: intra-module, inter-
module, and intra-aspects or intra-classes. Def-use pairs are
computed using Control Flow Graphs (CFG) to define what
interactions between aspects and classes must be tested.

Case 2: In this case we assume a(i + k) < a(i + 1) and
b(i + k) ≤ b(i + 1). Our goal is to swap jobs i + 1 and
i + k. To this end we exchange start and finishing times of
jobs i + 1 and i + k as follows. Let a′(i + k) := a(i + 1),
b′(i+k) := b(i+1) and a′(i+1) := a(i+k), b′(i+1) := b(i+k).
We can now execute job i + 1 on processor (i + 1) mod m
(where i+k was scheduled earlier) and job i+k on processor
j. The new schedule is feasible since r(i+1) ≤ r(i+ k) and
d(i+ 1) ≤ d(i+ k) by the agreeable deadline property. The
energy consumption did not change because the total energy
consumed by i+1 and i+k remains unchanged for they have
unit size.
Like some of the characteristics found on object oriented

languages reduce the probability of some errors, others favor
the appearance of new categories of the same [2]. Among the
favoring characteristics, it can be cited the encapsulation,
polymorphism and dynamic binding.
Case 3: For the last case we assume a(i+ k) < a(i+ 1)

but b(i+k) > b(i+1). We can now exchange the start times
of jobs i + 1 and i + k by setting a′(i + 1) := a(i + k) and
a′(i + k) := a(i + 1). Since start times are exchanged, we
can now swap the complete work assignment on processor
(i+1) mod m after (and including) job i+ k with the work
assignment on processor j after (and including) job i + 1.
The schedule is feasible since (by agreeable deadlines) r(i+
1) ≤ r(i+k). The power consumption of jobs i+1 and i+k
in the original schedule is (b(i+1)−a(i+1))1−α+(b(i+k)−
a(i+k))1−α while we have (b(i+1)−a(i+k))1−α+(b(i+k)−
a(i + 1))1−α in the modified schedule. By the convexity of
the power function the latter expression is smaller because
a(i+ k) < a(i+ 1).
When analyzing CRR on J ′, rather than the optimal

schedules constructed in step 2 of the algorithm, we will
consider schedules generated according to the Average Rate
(AVR) algorithm by Yao. This algorithm sets processor
speeds according to job densities. For any processor j and
time t, where 1 ≤ j ≤ m and t ∈ [0, T), let ckj(t) be the
number of jobs from class Ck active at time t that have been
assigned by CRR to processor j. Set the speed of processor
j at time t to

sj(t) =
∑

k≥0

ckj(t)∆/2
k. (12)

Sequencing available jobs on processor j according to the
Earliest Deadline policy yields, not surprisingly, an extremly
feasible schedule. Let S′AV R,j be the resulting schedule on
processor j and E′AVR,j the energy consumption of S′AV R,j .
As CRR computes an optimal schedule for each processor,
its total energy E′CRR is bounded by

E′CRR ≤
m
∑

j=1

E′AVR,j .

We next estimate the energy volumes E′AVR,j , 1 ≤ j ≤
m. To this end we consider two energy bounds. Firstly,
suppose that job i′ ∈ J ′ is processed at speed 1/(d(i′) −
r(i′)) throughout its active interval. The minimum energy
necessary to complete the job is (d(i′)− r(i′))1−α and hence
the minimum energy necessary to complete all jobs i′ ∈ J ′
is at least

E′min =
∑

i′∈J ′
(d(i′)− r(i′))1−α =

∑

k≥0

∑

i′∈Ck

(2k/∆)1−α. (13)

Secondly, we consider the single processor schedule S′AV R
constructed by AVR for J ′. More specifically, at time t the
speed is set to

s(t) =
∑

k≥0

ck(t)∆/2
k. (14)

Proof. On processor j we schedule the jobs in Sj in in-
creasing order of job number. Thus the jobs are scheduled
in non-decreasing order of deadlines. We first consider any
job i ∈ Sj with p(i) ≤ L(i)/m and then any i ∈ Sj with
p(i) > L(i)/m. In both cases we will prove that the job is
finished by its deadline.
Fix any i ∈ Sj with p(i) ≤ L(i)/m. We will show that

after the initial speed setting in step 1 of the speed function
definition, the job is finished by d(i). As the speed can only
increase in the adjustment step 2, the lemma then holds for
this job i. Let k be the largest integer such that λjk ≤ i. By
time d(λjk) a total load of

k
∑

l=1

(

2− 1

m

)

sjl (d(λ
j
l)− d(λ

j
l−1))

=

(

2− 1

m

) k
∑

l=1

1

m

L(λjl)− L(λ
j
l−1)

d(λjl)− d(λ
j
l−1)

(d(λjl)− d(λ
j
l−1))

=

(

2− 1

m

)

L(λjk)/m (15)

is completed on processor j. If i > λjk, then between time
d(λjk) and d(i) a load of

(

2− 1

m

)

sjk+1(d(λ
j
k+1)− d(λ

j
k))

=

(

2− 1

m

)

1

m

L(λjk+1)− L(λ
j
k)

d(λjk+1)− d(λ
j
k)

(d(i)− d(λjk))

≥
(

2− 1

m

)

1

m

L(i)− L(λjk)
d(i)− d(λjk)

(d(i)− d(λjk))

=

(

2− 1

m

)

(L(i)− L(λjk))/m (16)

is completed. The inequality follows from the definition
of λjk+1. Combining (15) and (16) we find that a total
load of at least (2 − 1

m
)L(i)/m is finished on processor j

by time d(i). It remains to argue that the total process-
ing requirement of jobs scheduled on processor j before job
i and including p(i) is at most (2 − 1

m
)L(i)/m. To this

end consider the event when EDL assigns job i to proces-
sor j. As the job is placed on the least loaded processor,
just after the assignment processor j has a load of at most
1
m

∑

i′<i p(i
′) + p(i) ≤ (2 − 1

m
)L(i)/m, and we are done

because jobs assigned to processor j at a later stage are
scheduled after job i.
Next we examine a job i with p(i) > L(i)/m. After the

speed adjustment in step 2 of the speed function definition,
processor j runs at a speed of at least (2 − 1

m
)p(i)/d(i)

throughout [0, d(i)). Thus a total work of at least (2− 1
m
)p(i)

gets finished by d(i). Again, when EDL assigns job i to pro-
cessor j, the total load on the processor is upper bounded
by 1

m

∑

i′<i p(i
′) + p(i) ≤ (2 − 1

m
)p(i) and this is indeed

the total work of jobs scheduled on processor j up to (and
including) job i.

We compare the energy incurred by the speed function to
the energy of an optimal solution. Let

E1
j =

lj
∑

l=1

(sjl)
α(d(λjl)− d(λ

j
l−1)).

This expression represents the energy used by our speed
function on processor j after the initial setting when speeds
are reduced by a factor of 2− 1

m
.

Given an optimal schedule, let sl,opt be the average speed
of them processors during the time interval [d(λjl−1), d(λ

j
l)),

for l = 1, . . . , lj . By the convexity of the power function, the
total energy used by the optimal solution is

EOPT ≥ m
lj
∑

l=1

(sl,opt)
α(d(λjl)− d(λ

j
l−1)).

The speeds sl,opt must satisfy the constraint that at time
d(λjk) a load of at least L(λjk) is completed, for k = 1, . . . , lj .
In the following let δjl = d(λjl)− d(λ

j
l−1).

m
k
∑

l=1

xlδ
j
l ≥ L(λ

j
k), (17)

for k = 1, . . . , lj . Suppose (y1, . . . , ylj) with (y1, . . . , ylj) 6=
(sj1, . . . , s

j
lj
) is an optimal solution. Note that

m
k
∑

l=1

sjl δ
j
l = L(λjk), (18)

for k = 1, . . . , lj . Thus there must exist a k with yk > sjk:
If yl ≤ sjl held for l = 1, . . . , lj , then there would be a k′

with yk′ < sjk′ and hence m
∑k′

l=1 y
α
l δ

j
l < L(λjk′), resulting

in a violation of constraint (17) for k = k′. Let k1 be the
smallest index such that yk1 > sjk1 . We have yl = sjl , for
l = 1, . . . , k1−1 since otherwise, using the same argument as
before, constraint (17) would be violated for k = k1−1. Let
k2 with k2 > k1 be the smallest index such that yk1 > yk2 .
Such an index exists because otherwise the invariant implies
yl > sjl , for l = k1, . . . , lj , and we findm

∑lj
l=1 ylδ

j
l > L(λjlj).

In this case we could reduce ylj , achieving a smaller objective
function value f and hence a contradiction to the optimality
of the yl, 1 ≤ l ≤ lj .

5. CONCLUSIONS
This paragraph will, effectively, end the body of this sam-

ple document. You might still have Acknowledgments or an
Appendix in your original conference article, however, do re-
member (as stated in the Introduction) Research Highlights
are purposefully edited so that they appeal to a broader
community. Whilst, for example, explicit proofs of theorems
are appropriate, and welcomed, in an Appendix section for
a Proceedings, they are inappropriate in the context of a
magazine.
There is still the Bibliography to deal with; and we will

make a disclaimer about that here: with the exception of
the reference to the LATEX book, the citations in this paper

are to articles which have nothing to do with the present
subject and are used as examples only.
Most authors will avail of a bibliography database (.bib)

and \cite the key values therein. The most appropriate
bibliography style file (.bst) to use is the abbrv style. ACM
endorses the use of a .bib and the abbrv style in order to
produce the references. However, because the number of
references for a Researchh Highlights article is reduced, we
have no problem with authors choosing, instead, to enter
their references directly using a \bbl.

6. ACKNOWLEDGMENTS
This section is optional; it is a location for you to acknowl-

edge grants, funding, editing assistance, collaboration, ac-
cess to uncommon, but necessary, hardware or software etc.
In the present case, for example, the authors would like to
thank Gerald Murray of ACM for his help in codifying this
Author’s Guide and the .cls and .tex files that it describes.

7. REFERENCES
[1] R. T. Alexander, J. M. Bieman, and A. A. Andrews.

Towards the systematic testing of aspect-oriented
programs. Technical Report CS-4-105, Department of
Computer Science, Colorado State University, Fort
Collins, Colorado, 2004.

[2] R. V. Binder. Testing object-oriented systems: models,
patterns, and tools. Addison-Wesley Longman
Publishing Co., Inc., 1999.

[3] M. Bowman, S. K. Debray, and L. L. Peterson.
Reasoning about naming systems. ACM Trans.
Program. Lang. Syst., 15(5):795–825, November 1993.

[4] J. Braams. Babel, a multilingual style-option system
for use with latex’s standard document styles.
TUGboat, 12(2):291–301, June 1991.

[5] M. Clark. Post congress tristesse. In TeX90
Conference Proceedings, pages 84–89. TeX Users
Group, March 1991.

[6] M. Herlihy. A methodology for implementing highly
concurrent data objects. ACM Trans. Program. Lang.
Syst., 15(5):745–770, November 1993.

[7] L. Lamport. LaTeX User’s Guide and Document
Reference Manual. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1986.

[8] J. D. McGregor. Testing object-oriented components.
In Proceedings of the 10th European Conference on
Object-Oriented Programming, Berlin, 1996.
Springer-Verlag. Tutorial Notes.

[9] R. S. Pressman. Engenharia de Software. McGraw-Hill
Interamericana, 2002.

[10] S. Salas and E. Hille. Calculus: One and Several
Variable. John Wiley and Sons, New York, 1978.

[11] J. Zhao. Data-flow-based unit testing of
aspect-oriented programs. In Proceedings of the 27th
Annual International Computer Software and
Applications Conference (COMPSAC 2003), pages
188–197. IEEE Computer Society, 2003.

